ICON - MPI - DWD

Icosahedral GCMs for climate research and operational weather forecasting

DWD: Günther Zängl, Daniel Reinert, et al.

MPI-M: Marco Giorgetta, Levy Silvers et al.

Former: Luca Bonaventura, Almut Gassmann, Hui Wan

Original motivation, ca. 2001

- MPI-M and DWD models are not satisfactory for future needs:
- MPI-M uses ECHAM/MPIOM as coupled climate model
 - ECHAM breaks tracer wind consistency due to a mix of spectral transform method for equations of motion and flux form semi-Lagrange transport scheme for tracers
 - ECHAM is hydrostatic → no option for cloud modelling
 - Scaling issues
- DWD uses global GME and regional COSMO for weather forecasting
 - Difficulties resulting from the usage of different dyn. equations, grids, numerics and parameterizations
 - No ocean model available for seasonal or decadal prediction

Goals and scope for new model

- Unified usage as climate model and NWP model to link daily verification of NWP to longer time scales
 - Atmospheric dynamical core must be fit for resolutions from ~1 to ~100 km and vertical extent to ~80 km
 - Tracer wind consistency
 - Regional refinement for simultaneous global and regional forecasting
 - Scale related physics packages (or scale aware physics?)
- High numerical efficiency and scalability:
 - Weak and strong scalability for NWP and climate
 - Usage on massively parallel machines (O(4+) cores)
- Framework for the development of atmosphere, land and ocean
 - Common infrastructure
 - Common grids

ICON characteristics

- Fully compressible equations of motion
- Mass and tracer mass conservation
- Icosahedral grids to avoid polar singularities and obtain a relatively uniform horizontal resolution
 - Option for triangle or hexagon/pentagon grids
- Static grid refinement by one—way or two-way grid nesting in 1 or several regions with individual refinement
 - Unstructured grid
 - Triangles allow simple refinement procedure
- Fast numerics that scales well and may be used with GPUs etc.
 - Small stencils
 - No global communication

Grid construction

- (a) \rightarrow (b) Project the icosahedron into the sphere
- (c) and (d) Root refinement: Partition each edge into m sections of equal length and connect these points with great circle arcs parallel to the edges → "Rm"
- (e) Further global refinements: Make bisection of edges and connect by great circle arcs, repeat n times → "Bn"

Regional refinement: As for global, but limited to a region

Grid examples

- Light blue: spherical icosahedron (R1B0)
- Dark blue: global R2B0
- Green: Northern hemisphere R2B1
- Red: Europe R2B2

- Land sea mask at R2B4 (~140 km)
- Ocean cells have 2 wet edges
- Additional manipulation required for straits, passages etc.

Prototype grid setup at DWD

- Global R2B7 (~20 km)
- 2 fold refinement over Europe (~5 km)

Staggering of variables

• C – grid staggering in horizontal and Lorenz grid in vertical:

Basic operators on triangular grid

Divergence
 Gauss's theorem
 (problematic)

2. Gradient finite difference

3. Curl Stokes' theorem

Vertical grid

Hybrid sigma height grid

Without or

 or with smoothing with altitude (Schär et al., 2002)

(Fig. from Schär et al., 2002)

Fully compressible system of equations

(shallow atmosphere apr., spherical Earth, constant gravity)

$$\frac{\partial v_n}{\partial t} + (\zeta + f)v_t + \frac{\partial K}{\partial n} + w \frac{\partial v_n}{\partial z} = -c_{pd}\theta_v \frac{\partial \pi}{\partial n}$$

$$\frac{\partial w}{\partial t} + \nabla \cdot (\vec{v}_n w) - w \nabla \cdot \vec{v}_n + w \frac{\partial w}{\partial z} = -c_{pd}\theta_v \frac{\partial \pi}{\partial z} - g$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\vec{v}\rho) = 0$$

$$\frac{\partial \rho \theta_{v}}{\partial t} + \nabla \cdot (\vec{v} \rho \theta_{v}) = 0$$

v_n,w: normal/vertical velocity component

ρ: density

 θ_{v} : Virtual potential temperature

K: horizontal kinetic energy

ζ: vertical vorticity component

 π : Exner function

blue: independent prognostic variables

Numerical implementation

- 2D Lamb transformation for nonlinear momentum advection
- Flux form for continuity equation and thermodynamic equation; Miura 2nd-order upwind scheme (centered differences) for horizontal (vertical) flux reconstruction
- Finite-volume tracer advection scheme (Miura, 2007) with
 - 2nd-order and 3rd-order accuracy for horizontal advection;
 - 3rd-order piecewise parabolic method for vertical advection
 - monotonous and positive-definite flux limiters

Transport scheme (Miura, 2007)

 Compute flux of tracer mass over each edge from the approximated integrals of the tracer concentration over the departure regions

- Rhomboidal approximation of the departure region
- Linear, quadratic or cubic polynomial reconstruction
- Integrate polynomials with Gaussian quadrature (1 or 4 quadrature points).
- Simplified integration: apply polynomial of upwind cell, even if departure region overlaps with several neighboring grid cells
- Use dynamical core mass flux to obtain tracer and air mass consist

Time stepping

- Two time level predictor corrector scheme
- Horizontally explicit time stepping within the dynamical core at the time step needed for sound waves
 - Avoid complications of implicit methods and their risks for scaling properties
 - Efficiency gains of split-explicit time-stepping schemes (based on Leapfrog or Runge-Kutta) are less clear for global models extending to the mesosphere due to smaller ratio between sound speed and maximum wind speed
- Vertically implicit time stepping
- Longer time step for tracer advection and physics schemes

Process splitting

- 1. Dynamics with slow physics $n_{\text{now}} \rightarrow n_{\text{new}}^*$ (in m sub steps)
 - Radiation (reduced freq. for rad. transfer, red. resolution)
 - Convection
 - GWD
 - Divergence damping
- 2. Horizontal diffusion on v_n and θ : $n_{new}^* \rightarrow n_{new}^*$
- 3. Tracer transport:

$$n_{now} \rightarrow n_{new}^*$$

- Strang or Godunov splitting of horizontal and vertical advection
- 4. Fast physics, time split

$$n_{\text{new}}^{*'} \rightarrow n_{\text{new}}$$

- 1. Saturation adjustment
- 2. Turbulent fluxes
- 3. Cloud microphyiscs
- 4. Saturation adjustment
- 5. Surface/soil processes

Problems

Triangular C-grid has computational mode (cf. Dave Randall's talk)
 triggered by the discretized divergence operator

$$\operatorname{div}(\mathbf{v})_{i} = (\nabla \cdot \mathbf{v})_{o} + (-1)^{\delta} l H(\mathbf{v})_{o} + \mathcal{O}(l^{2})$$

- 1. Suppress the computational mode → ICON-MPI-DWD
 - Divergence damping
 - Filter normal wind used for divergence operator

3. Other grid/discretization → cf. variety of DCMIP models

Summary

- The ICON-MPI-DWD model is developed for application over a wide range of scales in space and time
- Non-hydrostatic, fully compressible
- Mass and tracer mass conservation
- Numerical efficiency and high scalability
- Triangular C-grid problems suppressed numerically
- Model is in NWP test mode

END

